65 research outputs found

    Clustering comparison of point processes with applications to random geometric models

    Full text link
    In this chapter we review some examples, methods, and recent results involving comparison of clustering properties of point processes. Our approach is founded on some basic observations allowing us to consider void probabilities and moment measures as two complementary tools for capturing clustering phenomena in point processes. As might be expected, smaller values of these characteristics indicate less clustering. Also, various global and local functionals of random geometric models driven by point processes admit more or less explicit bounds involving void probabilities and moment measures, thus aiding the study of impact of clustering of the underlying point process. When stronger tools are needed, directional convex ordering of point processes happens to be an appropriate choice, as well as the notion of (positive or negative) association, when comparison to the Poisson point process is considered. We explain the relations between these tools and provide examples of point processes admitting them. Furthermore, we sketch some recent results obtained using the aforementioned comparison tools, regarding percolation and coverage properties of the Boolean model, the SINR model, subgraph counts in random geometric graphs, and more generally, U-statistics of point processes. We also mention some results on Betti numbers for \v{C}ech and Vietoris-Rips random complexes generated by stationary point processes. A general observation is that many of the results derived previously for the Poisson point process generalise to some "sub-Poisson" processes, defined as those clustering less than the Poisson process in the sense of void probabilities and moment measures, negative association or dcx-ordering.Comment: 44 pages, 4 figure

    Continuum Line-of-Sight Percolation on Poisson-Voronoi Tessellations

    Full text link
    In this work, we study a new model for continuum line-of-sight percolation in a random environment driven by the Poisson-Voronoi tessellation in the dd-dimensional Euclidean space. The edges (one-dimensional facets, or simply 1-facets) of this tessellation are the support of a Cox point process, while the vertices (zero-dimensional facets or simply 0-facets) are the support of a Bernoulli point process. Taking the superposition ZZ of these two processes, two points of ZZ are linked by an edge if and only if they are sufficiently close and located on the same edge (1-facet) of the supporting tessellation. We study the percolation of the random graph arising from this construction and prove that a 0-1 law, a subcritical phase as well as a supercritical phase exist under general assumptions. Our proofs are based on a coarse-graining argument with some notion of stabilization and asymptotic essential connectedness to investigate continuum percolation for Cox point processes. We also give numerical estimates of the critical parameters of the model in the planar case, where our model is intended to represent telecommunications networks in a random environment with obstructive conditions for signal propagation.Comment: 30 pages, 4 figures. Accepted for publication in Advances in Applied Probabilit

    Randomised Geographic Caching and its Applications in Wireless Networks

    Get PDF
    The randomised (or probabilistic) geographic caching is a proactive content placement strategy that has attracted a lot of attention, because it can simplify a great deal cache-management problems at the wireless edge. It diversifies content placement over caches and applies to scenarios where a request can be possibly served by multiple cache memories. Its simplicity and strength is due to randomisation. It allows one to formulate continuous optimisation problems for content placement over large homogeneous geographic areas. These can be solved to optimality by standard convex methods, and can even provide closed-form solutions for specific cases. This way the algorithmic obstacles from NP-hardness are avoided and optimal solutions can be derived with low computational cost. Randomised caching has a large spectrum of applications in real-world wireless problems, including femto-caching, multi-tier networks, device-to-device communications, mobility, mm-wave, security, UAVs, and more. In this chapter we will formally present the main policy with its applications in various wireless scenarios. We will further introduce some very useful extensions related to unequal file-sizes and content placement with neighbourhood dependence

    Directionally Convex Ordering of Random Measures, Shot Noise Fields and Some Applications to Wireless Communications

    Get PDF
    Directionally convex (dcxdcx) ordering is a tool for comparison of dependence structure of random vectors that also takes into account the variability of the marginal distributions. When extended to random fields it concerns comparison of all finite dimensional distributions. Viewing locally finite measures as non-negative fields of measure-values indexed by the bounded Borel subsets of the space, in this paper we formulate and study the dcxdcx ordering of random measures on locally compact spaces. We show that the dcxdcx order is preserved under some of the natural operations considered on random measures and point processes, such as deterministic displacement of points, independent superposition and thinning as well as independent, identically distributed marking. Further operations such as position dependent marking and displacement of points though do not preserve the dcxdcx order on all point processes, are shown to preserve the order on Cox point processes. We also examine the impact of dcxdcx order on the second moment properties, in particular on clustering and on Palm distributions. Comparisons of Ripley's functions, pair correlation functions as well as examples seem to indicate that point processes higher in dcxdcx order cluster more. As the main result, we show that non-negative integral shot-noise fields with respect to dcxdcx ordered random measures inherit this ordering from the measures. Numerous applications of this result are shown, in particular to comparison of various Cox processes and some performance measures of wireless networks, in both of which shot-noise fields appear as key ingredients. We also mention a few pertinent open questions.Comment: Accepted in Advances in Applied Probability. Propn. 3.2 strengthened and as a consequence Cor 6.1,6.2,6.

    Optimal Paths on the Space-Time SINR Random Graph

    Full text link
    We analyze a class of Signal-to-Interference-and-Noise-Ratio (SINR) random graphs. These random graphs arise in the modeling packet transmissions in wireless networks. In contrast to previous studies on the SINR graphs, we consider both a space and a time dimension. The spatial aspect originates from the random locations of the network nodes in the Euclidean plane. The time aspect stems from the random transmission policy followed by each network node and from the time variations of the wireless channel characteristics. The combination of these random space and time aspects leads to fluctuations of the SINR experienced by the wireless channels, which in turn determine the progression of packets in space and time in such a network. This paper studies optimal paths in such wireless networks in terms of first passage percolation on this random graph. We establish both "positive" and "negative" results on the associated time constant. The latter determines the asymptotics of the minimum delay required by a packet to progress from a source node to a destination node when the Euclidean distance between the two tends to infinity. The main negative result states that this time constant is infinite on the random graph associated with a Poisson point process under natural assumptions on the wireless channels. The main positive result states that when adding a periodic node infrastructure of arbitrarily small intensity to the Poisson point process, the time constant is positive and finite

    Random Measures, Point Processes, and Stochastic Geometry

    Get PDF
    International audienceThis book is centered on the mathematical analysis of random structures embedded in the Euclidean space or more general topological spaces, with a main focus on random measures, point processes, and stochastic geometry. Such random structures have been known to play a key role in several branches of natural sciences (cosmology, ecology, cell biology) and engineering (material sciences, networks) for several decades. Their use is currently expanding to new fields like data sciences. The book was designed to help researchers finding a direct path from the basic definitions and properties of these mathematical objects to their use in new and concrete stochastic models.The theory part of the book is structured to be self-contained, with all proofs included, in particular on measurability questions, and at the same time comprehensive. In addition to the illustrative examples which one finds in all classical mathematical books, the document features sections on more elaborate examples which are referred to as models}in the book. Special care is taken to express these models, which stem from the natural sciences and engineering domains listed above, in clear and self-contained mathematical terms. This continuum from a comprehensive treatise on the theory of point processes and stochastic geometry to the collection of models that illustrate its representation power is probably the main originality of this book.The book contains two types of mathematical results: (1) structural results on stationary random measures and stochastic geometry objects, which do not rely on any parametric assumptions; (2) more computational results on the most important parametric classes of point processes, in particular Poisson or Determinantal point processes. These two types are used to structure the book.The material is organized as follows. Random measures and point processes are presented first, whereas stochastic geometry is discussed at the end of the book. For point processes and random measures, parametric models are discussed before non-parametric ones. For the stochastic geometry part, the objects as point processes are often considered in the space of random sets of the Euclidean space. Both general processes are discussed as, e.g., particle processes, and parametric ones like, e.g., Poisson Boolean models of Poisson hyperplane processes.We assume that the reader is acquainted with the basic results on measure and probability theories. We prove all technical auxiliary results when they are not easily available in the literature or when existing proofs appeared to us not sufficiently explicit. In all cases, the corresponding references will always be given

    BOLD fMRI signal in stroke patients and its importance for prognosis in the subacute disease period – Preliminary report

    Get PDF
    Functional magnetic resonance imaging (fMRI) allows for the assessment of neuronal activity through the blood-level-dependent signal. The purpose of study was to evaluate the pattern of brain activity in fMRI in patients with ischemic stroke and to assess the potential relationship between the activity pattern and the neurological/functional status. Methods The fMRI was performed in patients up to 4th day of stroke. All the patients were analyzed according to NIHSS on 1st day and mRankin scale on 14th day of stroke, followed by analyzing of fMRI signal. Results The study enrolled 13 patients at a mean age of 64.3years. Eight (61.5%) showed cerebellar activation and 2 (15.38%)- insular activation. In those who scored 0–2 on mRankin scale, the most frequently observed activity was located in the regions: the M1, SMA and PMC in the stroke hemisphere and the cerebellum. In those cases, the non-stroke hemisphere was more frequently involved in the areas: the M1 and PMC. There was a tendency for a better prognosis in relation to age <65years and activation of the SMA in the stroke hemisphere. Conclusion There are differences observed in the activation areas of the cerebral cortex both in the stroke and non-stroke hemispheres. More than half of the patients with hemispheric stroke but all with good outcome showed cerebellar activation. There is probable positive correlation between the BOLD-signal size, young age, activation of supplementary motor area in stroke hemisphere and good functional status of patients in the subacute period of stroke

    Statistical learning of geometric characteristics of wireless networks

    Get PDF
    International audienceMotivated by the prediction of cell loads in cellular networks, we formulate the following new, fundamental problem of statistical learning of geometric marks of point processes: An unknown marking function, depending on the geometry of point patterns, produces characteristics (marks) of the points. One aims at learning this function from the examples of marked point patterns in order to predict the marks of new point patterns. To approximate (interpolate) the marking function, in our baseline approach, we build a statistical regression model of the marks with respect some local point distance representation. In a more advanced approach, we use a global data representation via the scattering moments of random measures, which build informative and stable to deformations data representation, already proven useful in image analysis and related application domains. In this case, the regression of the scattering moments of the marked point patterns with respect to the non-marked ones is combined with the numerical solution of the inverse problem, where the marks are recovered from the estimated scattering moments. Considering some simple, generic marks, often appearing in the modeling of wireless networks, such as the shot-noise values, nearest neighbour distance, and some characteristics of the Voronoi cells, we show that the scattering moments can capture similar geometry information as the baseline approach, and can reach even better performance, especially for non-local marking functions. Our results motivate further development of statistical learning tools for stochastic geometry and analysis of wireless networks, in particular to predict cell loads in cellular networks from the locations of base stations and traffic demand
    corecore